MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice.
نویسندگان
چکیده
Plants have evolved complicated protective mechanisms to survive adverse conditions. Previously, we reported that the transcription factor OsbZIP46 regulates abscisic acid (ABA) signaling-mediated drought tolerance in rice (Oryza sativa) by modulating stress-related genes. An intrinsic D domain represses OsbZIP46 activity, but the detailed mechanism for the repression of OsbZIP46 activation remains unknown. Here, we report an OsbZIP46-interacting protein, MODD (Mediator of OsbZIP46 deactivation and degradation), which is homologous to the Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE5 (ABI5)-binding protein AFP. MODD was induced by ABA and drought stress, but the induction was much slower than that of OsbZIP46. In contrast to OsbZIP46, MODD negatively regulates ABA signaling and drought tolerance, and inhibits the expression of OsbZIP46 target genes. We found that MODD negatively regulates OsbZIP46 activity and stability. MODD represses OsbZIP46 activity via interaction with the OsTPR3-HDA702 co-repressor complex and down-regulation of the histone acetylation level at OsbZIP46 target genes. MODD promotes OsbZIP46 degradation via interaction with the U-box type ubiquitin E3 ligase OsPUB70. Interestingly, the D domain is required for both deactivation and degradation of OsbZIP46 via its interaction with MODD. These findings show that plants fine-tune their drought responses by elaborate regulatory mechanisms, including the coordination of activity and stability of key transcription factors.
منابع مشابه
Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice.
OsbZIP46 is one member of the third subfamily of bZIP transcription factors in rice (Oryza sativa). It has high sequence similarity to ABA-responsive element binding factor (ABF/AREB) transcription factors ABI5 and OsbZIP23, two transcriptional activators positively regulating stress tolerance in Arabidopsis (Arabidopsis thaliana) and rice, respectively. Expression of OsbZIP46 was strongly indu...
متن کاملFunctional characterization and reconstitution of ABA signaling components using transient gene expression in rice protoplasts
The core components of ABA-dependent gene expression signaling have been identified in Arabidopsis and rice. This signaling pathway consists of four major components; group A OsbZIPs, SAPKs, subclass A OsPP2Cs and OsPYL/RCARs in rice. These might be able to make thousands of combinations through interaction networks resulting in diverse signaling responses. We tried to characterize those gene f...
متن کاملABA Inducible Rice Protein Phosphatase 2C Confers ABA Insensitivity and Abiotic Stress Tolerance in Arabidopsis
Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic ...
متن کاملArabidopsis E3 Ubiquitin Ligases PUB22 and PUB23 Negatively Regulate Drought Tolerance by Targeting ABA Receptor PYL9 for Degradation
Drought causes osmotic stress and rapidly triggers abscisic acid (ABA) accumulation in plants. The roles of various ABA receptors in drought tolerance and molecular mechanisms regulating ABA receptor stability needs to be elucidated. Here, we report that Arabidopsis plants overexpressing PYL9, one of the 14 pyrabactin resistance (PYR)/pyrabactin resistance-like (PYL)/regulatory component of ABA...
متن کاملOsJAZ1 Attenuates Drought Resistance by Regulating JA and ABA Signaling in Rice
Jasmonates (JAs) and abscisic acid (ABA) are phytohormones known play important roles in plant response and adaptation to various abiotic stresses including salinity, drought, wounding, and cold. JAZ (JASMONATE ZIM-domain) proteins have been reported to play negative roles in JA signaling. However, direct evidence is still lacking that JAZ proteins regulate drought resistance. In this study, Os...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره شماره
صفحات -
تاریخ انتشار 2016